AI-Nd-Ni (Aluminum-Neodymium-Nickel)

V. Raghavan

In a previous investigation of this system, [1979Ryk] reported an isothermal section at 600 °C for the Nd-poor region, which exhibits a number of ternary compounds. Recently, [2001God1] determined a liquidus projection, two isothermal sections, and two vertical sections for Al-rich alloys.

Binary Systems

The Al-Nd phase diagram [1998Cac, 2001God1] depicts seven intermediate compounds: Nd₃Al ($D0_{19}$, Ni₃Sn-type hexagonal), Nd₂Al (C23, Co₂Si-type orthorhombic), NdAl (ErAl-type orthorhombic), NdAl₂ (C15, MgCu₂-type cubic), NdAl₃ ($D0_{19}$, Ni₃Sn-type hexagonal), β Nd₃Al₁₁ ($D1_3$, Al-deficient Al₄Ba-type tetragonal), and α Nd₃Al₁₁ (α La₃Al₁₁-type orthorhombic). The Al-Ni phase diagram [1993Oka] shows five intermediate phases: NiAl₃ ($D0_{11}$, Fe₃C-type orthorhombic), Ni₂Al₃ ($D5_{13}$ -type hexagonal), NiAl (CsCl-type cubic), Ni₅Al₃ (Ga_3 Pt₅-type orthorhombic), and Ni₃Al ($L1_2$, AuCu₃-type cubic; also denoted γ'). The Nd-Ni phase diagram [Massalski2, 1998Oka] has seven intermediate phases: NdNi₅, Nd₂Ni₇, NdNi₃, NdNi₂, NdNi, Nd₇Ni₃, and Nd₃Ni.

Ternary Compounds

[1979Ryk] reported a number of ternary compounds in this system. For a summary of the known structural details, see [Pearson3]. Among the Al-rich ternary compounds are NdNi₂Al₇ (denoted τ_1 ; structural details not known) and NdNiAl₄ (denoted τ_2 ; NiYAl₄-type orthorhombic).

Ternary Phase Equilibria

Starting with high-purity metals, [2001God1] melted about 20 Al-rich alloy compositions in an arc furnace under Ar atmosphere. The phase equilibria were studied using differential thermal analysis, x-ray diffraction, and optical and scanning electron metallography. The liquidus surface constructed by [2001God1] for Al-rich alloys is redrawn in

Fig. 1 Al-Nd-Ni liquidus projection for Al-rich alloys [2001God1]

Fig. 2 Al-Nd-Ni isothermal sections at (a) 700 °C and (b) 600 °C [2001God1]

Fig. 1. The primary phases of crystallization in this region are: (Al), NiAl₃, Ni₂Al₃, α Nd₃Al₁₁, β Nd₃Al₁₁, NdAl₂, and τ_1 . There are two U-type transition reactions: U₁ at 860 °C and U₂ at 629 °C. The binary phase NiAl₃ forms at 877 °C through the peritectic reaction P in the ternary region. The final solidification near the Al corner is through the ternary eutectic reaction E at 626 °C. Two isothermal sections for Al-rich alloys at 700 and 600 °C determined by [2001God1] are shown in Fig. 2.

[2001God2] studied the metastable solidification of Alrich alloys of this system in the as-cast samples. They found that the ternary eutectic in the as-cast samples comprises (Al) + NiAl₃ + α Nd₃Al₁₁, instead of (Al) + τ_1 + α Nd₃Al₁₁ seen in the stable diagram (Fig. 1).

References

1979Ryk: R.M. Rykhal, O.S. Zarechnyuk, and T.I. Yanson, Isothermal Section at 600 °C of Neodymium-Nickel-Aluminum Ternary System in the Range of 0-33.3 At.% of Neodymium, *Dopov. Akad. Nauk Ukr. RSR, Ser. A, Fiz. Matemat. Tekhn. Nauki*, 1979, **41**(12), p 1057-1059, in Ukrainian

- 1993Oka: H. Okamoto, Al-Ni (Aluminum-Nickel), J. Phase Equilibria, 1993, 14(2), p 257-259
- **1998Cac:** G. Cacciamani, G. Borzone, and R. Ferro, System Al-Nd, *COST 507 Thermo-chemical Database for Light Metal Alloys*, I. Ansara, A.T. Dinsdale, and M.H. Rand, Ed., Eur. Comm. EUR 18499 EN, Luxembourg, 1998, p 75-78
- 1998Oka: H. Okamoto, Nd-Ni (Neodymium-Nickel), J. Phase Equilibria, 1998, 19(3), p 290
- 2001God1: T. Godecke, W. Sun, R. Luck, and K. Lu, Phase Equilibria of the Al-Nd and Al-Nd-Ni Systems, Z. Metallkd., 2001, 92(7), p 723-730
- 2001God2: T. Godecke, W. Sun, R. Luck, and K. Lu, Metastable Al-Nd-Ni and Stable Al-La-Ni Phase Equilibria, *Z. Metallkd.*, 2001, 92(7), p 717-722